THE 18-ELECTRON ELECTROCYCLISATION OF VINYLOGOUS FIDECENE. 1) **

AN UNUSUAL SEQUENCE OF PERICYCLIC PROCESSES

Andreas Beck, Lothar Knothe, Dieter Hunkler and Horst Prinzbach *
Chemisches Laboratorium der Universität, 7800 Freiburg i. Br., BRD

Upon thermal activation the vinylogous fidecene $\underline{1}$ is isomerised into the pentacyclic indenoid hydrocarbon $\underline{13}$ (benzene, $t_{1/2}$ (150°C) ca. 5 min), the formation of which is explained by an initial conrotatory ("symmetry-forbidden") 18-electron electrocyclisation followed by two fast hydrogen migrations ([1.9],[1.5]) and a 14π -electrocyclisation.

The thermal α,ω -electrocyclisation of the vinylogous fulvalenes $\underline{A}^{(2)}$, $\underline{B}^{(1)}$ and $\underline{C}^{(3)}$ (to give $\underline{D},\underline{E}$ and \underline{F}) is remarkable in view of the unusually large number of π -electrons involved (12,14,16) and the exclusively antarafacial bond formation $\underline{A}^{(3)}$. An extension to systems with

even more (18,20,24) π -electrons participating in [4N]- and [4N+2]-pericyclic transition states is offered by the fulvadiens $\underline{1}-\underline{3}$ 5), in which the hendecafulvene unit functions as a 12-electron component. Synthesis and electrocyclisation of $\underline{1}$ ("Vinylogous fidecene", "Penta-

hendecafulvadiene") 6) are presented in this communication.

Starting material is the ketone $\frac{4}{2}$ reported by $\frac{\text{Vogel}}{\text{CO}_2}$ et al. $\frac{7}{2}$. After $\frac{\text{Wittig-Horner}}{\text{Colorestation}}$ condensation ((C₂H₅O)₂P(O)CH₂CO₂C₂H₅, NaH, xylene, 140°C) to $\frac{5}{2}$ (m.p. 65°C, 62%, λ_{max} (ethanol)= 388nm

(ϵ =8600)), reduction (LAH, ether, -30°C) to $\underline{6}$ (65%, λ_{max} (ethanol)= 332 nm (ϵ =3400)) and oxidation (MnO₂, acetone, -20°C) the aldehyde $\underline{7}$ (m.p. 118°C, 48%, λ_{max} (isooctane)= 420 nm (ϵ = 11300) is obtained. Condensation of $\underline{7}$ with cyclopentadiene under proven conditions (methanol, KOH, 0°C) $\underline{1}$ yields $\underline{1}$ (red-violet crystals, m.p. 114°C, 41%). $\underline{1}$, like most fulvalenes, is

only stable in the dark, under an inert atmosphere and at low temperature. Its electronic absorption spectrum (λ_{max} = 430 nm (ϵ =33500)) compared with that of 3,8-methanofidecene (λ_{max}

(cyclohexane) = 415 nm) ⁶⁾ reflects the expected bathochromic shift. The "fulvenoid" character is typically manifested by the NMR-comparison (¹H, ¹³C) ^{5,8)} with the delocalised 14π-system 8/2 . J_{1 ',2} =12.5 Hz (30-150°C) demonstrates the preference for the s-trans-conformation. Since 2"-H is significantly deshielded with respect to 5"-H

 $(\Delta \delta = 0.32 \text{ ppm})$ but 1-H with respect to 10-H $(\Delta \delta = 0.07 \text{ ppm})$ is not, it is concluded that C11 is deplaced from the C1C2C9C10-plane (syn or anti) to an extent which excludes a sizable anisotropic influence of the C1"=C2' double bond upon the 1(10)-hydrogens.

For the α,ω -electrocyclisation in $\underline{1}$ two conrotatory and two disrotatory pathways can be distinguished. The conrotatory ("symmetry-forbidden") modes start from the syn-/anti-s-cis-conformations, which are helically twisted around the C1 $^{\text{L}}$ C2 $^{\text{L}}$ single bond. If the hendecaful-vene-part in $\underline{1}$ accepts the geometry known for $\underline{4}$ $^{\text{10}}$, the syn, con pathway $\underline{1}$ * is sterically

favorable. The disrotatory ("symmetry-allowed") modes (e.g. $\underline{\underline{1}}^{**}$) need - as was stressed for $\underline{\underline{A}}$, $\underline{\underline{B}}$ and $\underline{\underline{C}}$ - a drastic distortion around the exocyclic double bonds and are hampered by steric compressions.

On heating in ca. 10^{-2} M degassed benzene solution, $\underline{1}$ remains unaltered up to ca. 120° C. At higher temperatures ($t_{1/2}(150^{\circ}\text{C})$ ca. 5 min, ΔG^{\ddagger} ca. 30 kcal/mole) a single product - besides polymeric material - is observed (TLC, 1 H-NMR) and isolated in up to 55% yield. This colourless crystalline isomer (m.p. 72° C) is identified (MS, UV, IR, 1 H-, 13 C-NMR) as the pentacyclic indenoid hydrocarbon $\underline{13}$; the relative orientation of the three CH₂-groups is confirmed by NO-experiments 11). Irradiation of $\underline{1}$ in a 10^{-2} M acetone solution (Q 81 lamp, 4 h) does not cause a measurable transformation.

Structure and selectivity in the formation of $\underline{13}$ are plausibly explained by assuming the indermediacy of compounds $\underline{10} - \underline{12}$. In view of the disadvantages of $\underline{1}^{**}$, the 12 β -configuration in $\underline{10}$, and hence the "forbidden" conrotatory cyclisation in $\underline{1}$ via the 18-electron transition

state 9^{-12} is demanded by the fact that only from this β -configuration can the signatropic [1,9]-hydrogen migration take place. It is unknown which of the two hydrogen migrations ([1,9],[1,5]) directly follows the initial rate-determining cyclisation. The [1,9]-migration

is given preference because of the unusually fast rate in a case which is stereoelectronically very similar $^{6)}$. The driving force for the 14-electron electrocyclisation in the 11-membered ring ($\underline{12} - \underline{13}$) is obviously the aromatisation in the indene part.

Because of the necessarily rather drastic reaction conditions, the chances of intercepting the primary product $\underline{10}$ were a priori rather poor. After thermolysis of $\underline{1}$ in excess dimethyl acetylenedicarboxylate (150°C) - conditions successfully applied to $\underline{0}$ and \underline{E} - only a [4+2]-adduct of the pentafulvene part in $\underline{1}$, probably resulting from anti-attack, is found ($\underline{14}$, m.p. 168-170°C, 80%). The latter, in contrast to $\underline{5}$, did not undergo a [12+2]-addition under any of the conditions tried. Efforts to take advantage of $\underline{14}$ for the synthesis of $\underline{15}$, a

useful model for the 20π -fulvalene $\frac{2}{2}$, through photochemical methylenenorbornadiene \longrightarrow methylenenorcaradiene isomerisation $\frac{13}{13}$ were unsuccessful. There was no indication that the presumably rather labile $\frac{1}{13}$ 18 π -annulene $\frac{16}{13}$ was present, when $\frac{1}{13}$ was thermolysed in the presence of MnO₂ (benzene, cp. $\frac{8}{2}$). Since $\frac{12}{12}$ was a potential equilibrium product of $\frac{13}{12}$, the latter was treated with trityl tetrafluoroborate; yet no hydride elimination yielding the conjugate acid of $\frac{16}{16}$ was observed.

We thank Prof. Dr. <u>E. Vogel</u> for a sample of the ketone <u>4</u> and detailed directions for its preparation. Financial support by the "<u>Deutsche Forschungsgemeinschaft</u>" and the "<u>Fonds der Chemischen Industrie</u>" is gratefully acknowledged.

- Dedicated to Prof. Dr. <u>W.v.E. Doering</u> on the occasion of his 65^{th} birthday as an expression of our good wishes and a mark of our esteem.
- 1) Cyclic cross-conjugated bond systems, Part 39. Part 38: H. Prinzbach, H. Bingmann,

 A. Beck, D. Hunkler, H. Sauter and E. Hädicke, Chem. Ber. 114, 1697 (1981); cit. lit.
- 2) H. Sauter, B. Gallenkamp and H. Prinzbach, Chem. Ber. 110, 1382 (1977).
- 3) H. Bingmann, L. Knothe, D. Hunkler and H. Prinzbach, Tetrahedron Lett. 1979, 4053; S. Kuroda, T. Asao, M. Funamizu, H. Kurihara and Y. Kitahara, ibid. 1976, 251.
- 4) s. E.N. Marvell, Thermal Electrocyclic Reactions, Acedemic Press, N.Y., 1980.
- 5) A. Beck, Dissertation Univ. Freiburg, in prep.
- 6) L. Knothe, H. Prinzbach and E. Hädicke, Chem. Ber. 114, 1656 (1981); cit. lit.
- 7) W. Grimme, J. Reisdorff, W. Jünemann and E. Vogel, J. Am. Chem. Soc. 92, 6335 (1970).
- 8) L. Knothe, H. Prinzbach and H. Fritz, Liebigs Ann. Chem. 1977, 687.
- 9) 1: 1H-NMR(CDC1₃):δ=0.69(d,12E-H),3.60(dt,12Z-H),5.99(d,1-H),6.06(d,10-H),6.26(m,5"-H),6.47(m,4"-H),6.50(m,4-,7-H),6.58(m,2"-,3"-H),6.58(d,2-H),6.60(d,1 LH),6.68(d,9-H),6.95 (m,5-,6-H),7.25(d,2 LH); J₄,12Z=J₇,12Z=1.3,J₄",5"=5.0,J₅,6=J₁2E,12Z=11.0,J₂,3=J₉,10=12.0,J₁',2'=12.5Hz. The novel 'azulenoid' 14π-annulene 8 (H. Prinzbach, Pure Appl. Chem. 28,281 (1971)) was obtained by [12+2]-addition of dimethyl acetylenedicarboxylate to 5 followed by oxidation with MnO₂ (greenish crystals, m.p. 149-152°C, 25%,λ_{max}(ethanol)= 590nm(ε=1 500); ¹H-NMR(CDC1₃):i.a.δ=-0.81(d,13Z-H)*,-0.49(d,13E-H)*,7.67(t,7-H)*,7.81 (t,8-H)**,7.86(d,6-H)***,7.93(d,11-H),8.11(d,9-H)***,9.67(d,12-H),10.17(s,4-H); J₆,7=J₇,8=J₈,9=9.0,J_{11,12}=10.5Hz; ¹³C-NMR(CDC1₃):i.a.δ=31.3(13-C),130.7(7-C)*,132.2,132.3(11-,6-C)*,134.3(12-C),135.2(8-C)*,135.8(9-C)*,147.8(4-C). The unsubstituted 8 is approached via 14π-electrocyclisation of vinylogues hendecafulvenes 5).
- 10) D.W. Hudson and O.S. Mills, Chem. Commun. 1971, 153.
- 11) $\frac{13}{13}$: MS:m/e=244(M+); UV(ethano1): $\lambda_{\text{max}}(\varepsilon)$ =323nm(4500),273(sh,14700),256(26500); 1 H-NMR(CDC1₃): δ =0.99(dd,2Z-H)*,1.01(dd,2E-H)*,2.14(dd,3-H),2.48(d,12Z-H),2,75(d,12E-H),3.20(d,1 'E-H), 3.37(d,1 'Z-H),5.47(d,11-H),5.80(dd,9-H)*,5.89(dd,10-H)**,6.09(s,6-H),6.54(m,2 'H),6.69 (d,8-H),6.85(m,3 'H),7.22(d,4 '-H),7.35(d,5 '-H); $J_{3,10}$ =0.3, J_{2} ',3=0.4, J_{1} E,5 = J_{1} Z,5 = J_{2} 3,1 = 0.5, J_{1} E,6=0.7, J_{3} ,12E= $J_{6,12Z}$ = $J_{8,10}$ =1.0, $J_{6,12E}$ =1.3, $J_{6,8}$ =1.4, $J_{8,11}$ =1.5, J_{1} E,2 = J_{1} Z,2 = J_{1} E,3 = J_{1} Z,3 = $J_{1,12Z}$ =2.0, J_{2} 2,2=4.5, J_{2} 2,3 = J_{2} 2,3=5.5, J_{4} ',5 = $J_{9,10}$ =7.5, $J_{2Z,3}$ =9.5, $J_{8,9}$ =10.5, $J_{10,11}$ =11.5, $J_{12E,12Z}$ =12.0, J_{1} E,1 Z_{2} =23.5Hz.
- 12) An 18π-electrocyclisation is a probable step in Vogel's synthesis of syn,syn-1,6:8,17: 10,15-Trismethano[18]annulene: W.Wagemann, M.Iyoda, H.M.Deger, I.Sombrock and E. Vogel, Angew. Chem., Int. Ed. Engl., 17, 956 (1978).
- 13) H. Prinzbach and H. Sauter, Tetrahedron Lett. 1974, 3049.

(Received in Germany 15 March 1982)